
诱导子对三角褐指藻岩藻黄素含量和三角褐指藻ξ-胡萝卜素脱氢酶基因表达的影响
张燕,龚一富,景丹丹,朱帅旗,王何瑜
中国药学杂志 ›› 2017, Vol. 52 ›› Issue (12) : 1061-1068.
诱导子对三角褐指藻岩藻黄素含量和三角褐指藻ξ-胡萝卜素脱氢酶基因表达的影响
Effects of Elicitors on Fucoxanthin Production and ZDS Gene Expression in Phaeodactylum tricornutum
目的 研究甲基茉莉酸(MeJA)、花生四烯酸(AA)、乙酰水杨酸(ASA)对三角褐指藻岩藻黄素含量及三角褐指藻ξ-胡萝卜素脱氢酶基因(PtZDS)表达的影响。方法 采用Illumina HiSeqTM 2000高通量测序方法获得PtZDS的cDNA全长序列,并对其进行生物信息学分析。利用HPLC测定MeJA、AA和ASA处理下,三角褐指藻岩藻黄素含量,RT-PCR检测PtZDS基因的表达。结果 该基因全长1 905 bp,具有一个1 776 bp的开放阅读框,编码591个氨基酸。推导的氨基酸序列分析结果表明,该蛋白具有一个典型的氨基氧化酶结构域(amine oxidase domain)、NAD(P)-binding Rossmann-like结构域和叶绿体转运肽序列。系统进化树结果表明,PtZDS蛋白与假微型海链藻(Thalassiosira pseudonana CCMP1335)的同源性达76%,亲缘关系较近,共处同一进化支上。0.1 mg·L-1 AA、25 mg·L-1 ASA和100 μmol·L-1 MeJA处理下三角褐指藻单位细胞内岩藻黄素的含量达到最高。RT-PCR分析结果表明,0.1 mg·L-1 AA、50 μmol·L-1 MeJA和10 mg·L-1 ASA处理下,PtZDS的表达水平达到最高。结论 PtZDS基因的表达可能与三角褐指藻中岩藻黄素的积累存在一定关系。100 μmol·L-1 MeJA处理下,三角褐指藻合成岩藻黄素的能力最强。
OBJECTIVE To explore the effects of methyl jasmonic acid(MeJA), arachidonic acid(AA) and acetylsalicylic acid(ASA) on fucoxanthin production and PtZDS gene expression in Phaeodactylum tricornutum.METHODS The full length cDNA of PtZDS gene in P. tricornutum was obtained by HiSeqTM Illumina 2000 and bioinformatics analysis. HPLC was used to determine the production of fucoxanthin in Phaeodactylum tricornutum, and RT-PCR was used to determine the expression level of PtZDS.RESULTS The total length of PtZDS gene was 1 905 bp, containing an open reading frame of 1 776 bp encoding 591 amino acids.The deduced amino acid sequence analysis showed that PtZDS protein contained a typical amino oxidase domain, NAD(P)-binding Rossmann-like domain and a chloroplastic transit peptide sequence.The phylogenetic analysis demonstrated that PtZDS was homologous with Thalassiosira pseudonana CCMP1335(76%). Under the treatment of 0.1 mg·L-1 AA, 25 mg·L-1 ASA and 100 μmol·L-1 MeJA, the highest yield of unit cell fucoxanthin content was achieved.Upon the observation of PtZDS regulation expression, the expression level of PtZDS reached a peak value under the treatment of 0.1 mg·L-1 AA, 50 μmol·L-1 MeJA and 10 mg·L-1 ASA.CONCLUSION The expression of PtZDS gene has certain relationship with the fucoxanthin synthesis of P. tricornutum. Under the treatment of 100 μmol·L-1 MeJA, the ability of synthetic fucoxanthinis the strongest in P. tricornutum.
三角褐指藻 / 岩藻黄素 / 甲基茉莉酸 / 乙酰水杨酸 / 花生四烯酸 / ξ-胡萝卜素脱氢酶 {{custom_keyword}} /
Phaeodactylum tricornutum / fucoxanthin / MeJA / AA / ASA / zeta-carotene desaturase {{custom_keyword}} /
[1]HAUGAN J A, AAKERMANN T, LIAAEN-JENSEN S. Isolation of fucoxanthin and peridinin[J]. Methods Enzymol, 1992, 213(19):231-245.
[2]CARON L, DOUADY D, QUINET-SZELY M, et al. Gene structure of a chlorophyll a/c-binding protein from a brown alga:presence of an intron and phylogenetic implications[J]. J Mol Evol, 1996, 43(3):270-280.
[3]KIM K N, HEO S J, KANG S M, et al. Fucoxanthin induces apoptosis in human leukemia HL-60 cells through a ROS-mediated Bcl-xL pathway[J]. Toxicol Vitro, 2010, 24(6):1648-1654.
[4]SACHINDRA N M, EMIKO S, HAYATO M, et al. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites[J]. J Agric Food Chem, 2007, 55(21):8516-8522..
[5]MAEDA H, HOSOKAWA M, SASHIMA T, et al. Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells[J]. Int J Mol Med, 2006, 18(1):147-152.
[6]MASASHI H, TATSUYA M, SHO N, et al. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice[J]. Arch Biochem Biophys, 2010, 504(1):17-25.
[7]SANG M K, JUNG Y J, KWON O N, et al. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum[J]. App Biochem Biotechnol, 2012, 166(7):1843-1855.
[8]MARTINO A D, MEICHENIN A, SHI J, et al. Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions [J]. J Phycol, 2007, 43(5):992-1009.
[9]CHRIS B, ALLEN A E, BADGER J H, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes [J]. Nature, 2008, 456(7219):223-244..
[10]KATO M, IKOMA Y, MATSUMOTO H, et al. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit[J]. J Enhanced Heat Transfer, 2011, 18(3):249-259..
[11]RODRIGO M J, MARCOS J L. Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L. ) during fruit development and maturation[J]. J Agric Food Chem, 2004, 52(22):6724-6731.
[12]ZHONG H Q, WU J S, HUANG M L, et al. Cloning and expression of ζ-carotene desatura gene in Ornamental Sunflower[J]. J Plant Gen Resour (植物遗传资源学报), 2015, 16(4):828-835.
[13]LI Y P, ZHU H S, WEN Q F, et al. Cloning and characteristics of ζ-carotene desatura genein Fragariaananassa duchesne[J]. J Trop Subtrop Bot (热带亚热带植物学报), 2010, 18(6):670-674.
[14]GAN Z B. Cloning and characterization of genes encoding phytoene desaturase and ζ-carotene desaturase from Chlorella Protothecoides[D]. Shanghai: Shanghai Jiao Tong University, 2010.
[15]GONG Y, LIAO Z, GUO B, et al. Molecular cloning and expression profile analysis of Ginkgo biloba DXS gene encoding 1-deoxy-D-xylulose 5-phosphate synthase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway[J]. Planta Medica, 2006, 72(4):329-335.
[16]GAO Z, MENG C, ZHANG X, et al. Induction of salicylic acid (SA) on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis[J]. Enzyme Microb Technol, 2012, 51(4):225-230.
[17]WANG Q W, WANG L L, GONG Y F. The effects of methyl jasmonate (MeJA) on the astaxanthin production and dxs gene expression of Haematococcus pluvialis[J]. J Fisheries, 2011, 35(12):1822-1828.
[18]JIANG X M, ZHENG Y Z. Total lipid and fatty acid composition of 14 species of mircroalgae [J]. Acta Hydrobiol Sin (水生生物学报), 2003, 27(3):243-247.
[19]ZHU S Q, GONG Y F, LIU H, et al. Effects of ammonium cerous sulfate on fucoxanthin content in Phaeodactylum tricornutum and research of transcriptional differences[J]. J Chin Rare Earth Soc(中国稀土学报), 2014, 32(6):750-757.
[20]PECKER I, CHAMOVITZ D, LINDEN H, et al. A single polypeptide catalyzing the conversion of phytoene to zeta-carotene is transcriptionally regulated during tomato fruit ripening[J]. Proc Natl Acad Sci USA, 1992, 89(11):4962-4966.
[21]YUE H Z, JIAN G J, YUAN Y, et al. Isolation and characterization of phytoene desaturase cDNA involved in the beta-carotene biosynthetic pathway in Dunaliella salina[J]. J Agricul Food Chem, 2005, 53(14):5593-5597..
[22]JUST B J, SANTOS C A F, FONSECA M E N, et al. Carotnoid biosynthesis structural genes in carrot (Daucuscarota):isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping[J]. Theor Appl Genet, 2007, 114(114):693-704.
[23]CONG L, LIU L, WANG C, et al. Isolation of cDNA Ecoding ζ-carotene desaturase gene from wheat(Triticum aestivum L. ) [J]. Biotechnology(生物技术), 2009, 19(2):1-3.
[24]LINDEN H, VIOQUE A, SANDMANN G. Isolation of a carotenoid biosynthesis gene coding for ζ-carotene desaturase from Anabaena PCC 7120 by heterologous complementation[J]. FEMS Microbiol Lett, 1993, 106(1):99-103.
[25]BREITENBACH J, FERN NDEZ-GONZ LEZ B, VIOQUE A, et al. A higher-planttype ζ-carotenedesaturase in the cyanobacterium Synechocystis PCC6803[J]. Plant Mol Biol, 1998, 36(5):725-732.
[26]CUNNINGHAM F X, SUN Z, CHAMOVITZ D, et al. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcussp strain PCC7942[J]. Plant Cell, 1994, 6(8):1107-1121.
[27]SANDMANN G. Molecular evolution of carotenoid biosynthesis from bacteria to plants[J]. Physiol Plant, 2002, 116(4):431-440.
[28]ZHU Y, WANG L L, CAI Y S, et al. Effects of methyl jasomate on the content of β-carotene of Dunaliella salina [J]. J Ningbo Univ(宁波大学学报), 2010, 23(1):13-16.
[29]ZHAO H L, YU R M. Progress in the application of elicitors in the plant cell cultures[J]. J Shenyang Pharm Univ(沈阳药科大学学报), 2000, 17(2):152-156.
浙江省科技厅重点科技创新团队项目资助(2012R10029-07,2010R50029);宁波科技攻关项目资助(2013C10018);浙江省大学生科技创新活动计划暨新苗人才计划项目资助(2014R405050)
/
〈 |
|
〉 |